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Entanglement is perhaps the most important new feature of the quantum world. It is
expressed in quantum theory by the joint measurement formula. We prove the formula
for projection valued observables from a plausible assumption, which for spacelike
separated measurements is a consequence of causality. State reduction is simply a way
to express the joint measurement formula after one measurement has been made, and
its result known.
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1. INTRODUCTION

Entanglement is perhaps the most important new feature of the quantum
world. Itis expressed in quantum theory by the joint measurement formula (JMF).
| prove that the JMF is equivalent to the conjunction of two assumptions. One is
NOEFFECT: A nonselective measurement of one member of a pair of entangled
noninteracting systems has no effect on measurement probabilities for the other
member. (The measurementisnselectivéf we do not use its result to condition
measurement probabilities for the other member.)

For projection valued observables, the JMF is equivalent to NOEFFECT
alone. An example shows that for general observables, NOEFEEQWF.

A violation of NOEFFECT in spacelike separated measurements would al-
low superluminal communication. Thus causality implies the JMF for spacelike
separated measurements of projection valued observables. The JMF implies vio-
lations Bell's inequality, and thus violations of locality. Thus, within the quantum
formalism,causality implies nonlocality

“No signaling” theorems have eliminated the worry that the nonlocality in
guantum theory violates causality (Jordan, 1983; Zanchini and Barletta, 1991).
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Our result shows that not only does nonlocality not violate causality, it is required
to preserve causality.

We prove that the state reduction formula (SRF) is an immediate corollary of
the JMF: state reduction is simply a way to express the JMF after one measurement
has been made, and its result known. We then prove the von NeumaohersL "
projection postulate from the SRF. Thusthe “postulate” is atheorem, a consequence
of the IMF.

All this sheds new light on entanglement, joint measurement, state reduction,
nonlocality, and causality in quantum theory.

The paperis organized as follows. Section 2 reviews the postulates of quantum
theory, without the JIMF or SRF. Section 3 describes my approach to the JMF and
SRF. Section 4 describes Masanao Ozawa’s approach to the JMF and SRF and
compares our two approaches. Section 5 argues that there is no measurement
problem. Section 6 gives the example showing that NOEFFECIMF.

2. QT-

To prepare for a discussion of the JMF and SRF, we review the postulates of
quantum theory, excluding the JMF and SRF. We call the th€dry For more
details, see Kraus (1983) and Bugttal. (1991).

A quantum syster8is represented by a complex Hilbert spagg Which in
this paper will be finite dimensional. preparationof Sis represented by state
a density operatar on Hs. A measurementdf Sis represented by asbservable
a positive operator valued measure (PO\$/4)_etS map the measured vals¢o
Es, 0 < Es < I. According to themeasurement formulahe probability of result
s for anS measurement on stateis Pr@) = Tr(Eso).

If Sisisolated, them evolves unitarily according t8chibdinger’s equation
o — Usoug. Important: for now, “isolated” excludes “entangled with another
system.” The extent to which Sadihger’s equation applies to a quantum system
entangled with another will be the focus of Section 4.

Let P be another quantum system. Ther- P is represented by §® Hp.
Thus the states of S+ P are density operators onsk® Hp, and the observables
are POVMs whose values are positive operators gieHHp. A measurement of
S onS + Pis represented by the POVM that map® Es ® |. Then from the
measurement formula, RBj(= Tr[(Es ® |)t]. The system$andP do not interact
if the unitary evolution operator @& + P factors:Us,p = Us ® Up.

If for some stater, Pr(s) = Tr(Eso) for every observablé& and every result
s, theno is the state o8. For the TrEso) uniquely determine the state We say
that “probabilities determine states.”

For reference we list several identities that we will use without comment:
Tr(XY) =Tr(YX), (s1, ® p1ls2 ® p2) = (s1lp1)(S2Ip2), X @Y = (X ®@1)(I1 ®Y),
and X®Y)s® p) = X|s) ® Y|p). The partial trace operator Trp maps
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operators or + P to operators ors (Cohen-Tannoudjet al, 1997). We have
the partial trace identities TX) = Tr[Trp (X)] and TR[(X ® 1)Y] = XTrp(Y)
(Buschet al,, 1991; Kraus, 1983). Using these identities and “probabilities deter-
mine states,” we see that if the stateSof P is 7, then the state dbis Trp(7):

Pr@s) = Tr[(Es ® 1)t] = Tr{Trp[(Es ® 1)z]} = Tr[Es Trp(7)]. Q)

3. JOINT MEASUREMENT AND STATE REDUCTION

In this section we prove results about joint measurement, state reduction,
causality, and nonlocality in the theory QT- defined in Section 2.

3.1. Joint Measurement Formula

PrepareS + P in stater at time t, after whichS andP do not interact. At
time p > t; measure observablP of P, with result p At time > t; measure
observableS of S, with result s Let Up be the unitary evolution operator fd?
from t; to tp. Let Us be the unitary evolution operator f&from t; to ts. Then

Pr(s& p) = Tr{(UJEsUs ® U E Up)z]. (IMF)

For giventp, P, ts, andS let the POVM representing the joint measure-
ment map the resuls( p) to Esg p. Then according to the measurement formula,
Prs& p) = Tr(Ese pr) for all s, p, andz. Thus the JMF for the measurement is
equivalent to

Vs, p Esg p = UJEsUs ® ULE Up. )

The (nonselective) probability afis 3, Pr(s& p) = Tr{(}_,, Ese p)]. If the P
measurement is not made, then according to Eq. (5), the probabibtisof

T Es(UsTrp(z)Ud)] = Tr(U{EUs ® 1)7].
NOEFFECT from Section 1 asserts that the two probabilities are equal:

A nonselective measurement of one member of a pair of entangled noninteracting sys-
tems has no effect on measurement probabilities for the other member.

Thus according to NOEFFECT,
Vs Z Esep= u; EsUs®I. (NOEFFECT)
P

Similarly,

VP Y Esap=1®UL{EUp. (NOEFFECT)
S
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Consider also the assertion thayz , is the product of its marginals:
Vs, p Esap= (Z Es p> ( > Esa p). (PRODMARG)
p s

Theorem 1. For given b, P, ts, andS,
JMF < (NOEFFECT+ PRODMARG)

Proof: We use the JMF in the form Eq. (2).

JMF = NOEFFECT. Sum Eq. (2) ovep and useZp Ep =1I. (This is the
no signaling theorem of Jordan, 1983.)

JMF = PRODMARG. Multiply the two NOEFFECT equations, which we
have just shown follow from the JMF, and use Eq. (2) to obtain PRODMARG.

(NOEFFECT+ PRODMARG)= JMF. Multiply the two NOEFFECT equa-
tions and use PRODMARG to obtain Eqg. (2). O

Corollary 1. If P andS are projection valued, thedMF <— NOEFFECT

Proof: From the theorem, it is sufficient to prove thaFifandS are projection
valued, then NOEFFECE PRODMARG. For a projection valuef, the Eg

are orthogonal projections. Thus thl%T EsUs® | on the right side of the first
NOEFFECT equation are orthogonal projections. Sums of these projections are
projections. Every POVM on a product space with projection valued marginal
measures satisfies PRODMARG (Davies, 1976, Th. 2.1, Eq. (2.7)). O

The exampleéE’ of Section 6 shows that for general POVMs, NOEFFEST
JMF.

The implication NOEFFECTE JMF for projection valued observables is
of special interest. As noted in Section 1, for spacelike separated measurements
causality implies NOEFFECT. Thus, in QT-:

Corollary 2. Causality implies the JMF for spacelike separated measurements
of projection valued observables.

The JMF predicts violations of Bell's inequality for some spacelike sepa-
rated measurements of projection valued observables. It thus predicts violations
of locality. Thus, in QT-:

Corollary 3. Causality implies nonlocality.
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We now turn to the SRF. Since probabilities determine states, we can refor-
mulate NOEFFECT:

A nonselective measurement of one member of a pair of entangled noninteracting sys-
tems has no effect on the state of the other member.

But the SRF says that if we makesalectivemeasurement, conditioning the state
of Son the? measurement result, then we mreiucethe state of.

3.2. State Reduction Formula

PrepareS + P in stater at time t, after whichS and P do not interact.
At t; measure observablP of P, with result p. Let |$ be the unitary evolution
operator ofS over the time of thé® measurement. Let, be the state of after
the’” measurement, conditioned on p. Then
Y Tre[(l ® Ep)7] ul

Op= STr[(TEp)T] S- (SRF)

Remarks (i) The SRF requireso assumptions about the statePafter theP
measurement, even tHastill exists. (ii) Since we do not assume that Sahinger’s
equation applies to a system entangled with another, we cannot interpret the SRF
as giving the evolution o8 during the? measurement. (iii) It iglassicalinfor-
mation, i.e.,p, which allows us to reduce the state®fo o. (iv) From the SRF,

Zp Pr(p)op = UsTrp(r)Ug, the unreduced state.
Theorem 2. JMF= SRF

Proof: MeasureS immediately after thé® measurement. From the JIMF,
Prs& p) = Tr{(UJEsUs ® Ep)r). (3)
Thus for everyS and evens,
Prs& p) _ Tr{(UJEUs ® Ep)r)
Pr(p) Tr[(I ® Ep)r]

_ Tr{Trp[(U{EUs ® (I ® Ep)rl)
N Tr[(l ® Ep)r]
Tre[(I ® Ep)t] ¢
=Tr{E(Us——U .
r{ ( ST @ Ep)e] ©
Since probabilities determine states, the SRF follows. O

Prsip) =

(4)

(For more on this kind of reasoning to obtain state reduction, see Svetlichny, 2002.)
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Conversely, given the SRF, a rearrangement of Eq. (4) proves Eq. (3). Thus

State reduction is simply a way to express the JMF after one measurement has
been made, and its result known.

K. Kraus makes a similar statement: “[State reductions] provide a convenient
‘shorthand’ description of correlation measurements. We may thus conclude that,
contrary to widespread belief, [state reductions] can be perfectly well understood,
if quantum mechanics is assumed to be valid also for measuring instruments.”
(Kraus, 1983, p. 99; my emphasis.) Our proof of the SRF does not assume that
guantum mechanics is valid for measuring instruments. Thus Kitakuse is
unnecessary. For more on this, see Section 5.

Corollary 4. If P is projection valued, theNOEFFECT= SRF

Proof: Measure a projection valued observaleanmediately after thé® mea-
surement. Then Corollary 2 implies Eq. (3), which implies Eq. (4) for projections
Es, which is sufficient to imply the SRF for tHe measurement. O

We close this section with a discussion of the von Neumandets measure-
ment model. LeE be a quantumsystemo be measured aritlbe a quanturprobe
which is part of a macroscopic measuring apparatus. Init&dligdP are separated
and unentangled, and in statgesandny. The system enters the measuring appa-
ratus, interacts with the probe, and leaves the apparatus. £et) (0o ® mo)U '
be the state of + P after the interaction, which is called @memeasurement
(A premeasurement isot a measurement: a premeasurement is reversible and
no measured value is created.) Now meadRrevith the resultp appearing on
the measuring apparatus. In the von Neumammelrs model, th® measurement
serves as a proxy for afimeasurement.

The model is for projection valuei with an associated self-adjoint operator
Zij s |sj)(sjl. Let P be a nondegenerate projection valued observable with an
associated self-adjoint operafpr; pi|pi)(pi|. Choose a unitary operatbk with
U(Isj)Ipo)) = Isj)Ipi) for some fixed initial stat¢po) of P. Then for an initial
vector stateso) = > j; aijlsj) of S, U(Iso)lpo)) = 2 ajlsj)Ipi) = It). For a
P measurement on stalte, Pr(py) = Zj |a; 2. For anS measurement on state
|so) = Pr(s) has the same value. ThusPameasurement on state with result
p« is also anS measurement on staf®) with results;.

The SRF gives the reduced statgof Safter theS measurement. To apply it,
we firstuse the identity Trp[(® X)Y] = Trp[Y (I ® X)] (Kraus, 1983, Eq. (5.15)):

Tre {(I ® Ep)r} = Trp {(1 ® Ep)It) (tI(l ® Ep,)}
= Trp {XjakIS)| Px) Zjaxj (Skj (P!}
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= Trp {Eg [S0) | Pi) (Sol Es (P!}
= Eq |%) (0| Es,-
Substitute this into the SRF:
_ s ExlIEs 0
Tr {Es |s0) (Sl Es }

As a vector, the reduced statedsEs |S0) /|| Es |So) |- This is the state given by the
von Neumann-liders projection postulat&ince JIMF= SRF, the “postulate” is
atheoremof QT- + JMF.

Oy

4. OZAWA'S APPROACH

Masanao Ozawa has published several papers on joint measurement and state
reduction (Ozawa, 1997a,b, 1998a,b, 2000a,b,c). He argues, correctly | believe,
that existing proofs of the JIMF and SRF are inadequate or flawed (Ozawa, 1997a,
p. 233; 1997b, p. 123; 1998a, p. 616; 20004, p. 6). He then offers his own proofs
of the JMF (Ozawa, 1997a, Th. 5.1; 2000a, Th. 3) and the SRF (Ozawa, 1997b,
Eqg. (43); 19984, Eq. (32)). Ozawa considers projection valued observables only.

As emphasized in Section 2, QT- does not assume thabd8iciger’s equation
applies to a quantum system entangled with another. But we can prove:

A unitary evolution of one member of a pair of entangled noninter-acting systems has
no effect on the state of the other member.
Proof: SinceS andP do not interact, the unitary evolution operator®# P
factors:Vs,.p = Vs ® Vp. Let t be the initial state o6 + P. Then for allEs,
THEs(VsTre(x)Ve)] = TH(Es @ 1)(Vs ® T (Vd @ 1]
= Tr(Es® (I @ V)1 ® Vp)(Vs ® 1)T(Vd @ 1]
= TI(Es ® 1)(Vs ® Vp)T(Vs ® Vp)'] ©)
= Tr{EsTrp[(Vs ® Vp)7(Vs ® Vp)']}.
Thus the state 0B at a later time, T#[(Vs ® Vp)7(Vs ® Vp)], is the same as the
state given by Scladinger’s equation applied ISanne,VsTrp(r)Vg. O

(This is the no signaling theorem of Zanchini and Barletta, 1991, Th. 3.)
For projection valued observables, we proved the JMF in Corollary 2 and the
SRF in Corollary 6 from the assumption NOEFFECT:

A nonselective measurement of one member of a pair of entangled noninteracting sys-
tems has no effect on the unreduced state of the other member.
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(We use the reformulated version following Corollary 4 and add the word “unre-
duced” for clarity and comparison.)
Ozawa uses a different assumption:

A selective measurement of one member of a pair of entangled noninteracting systems
has no effect on the reduced state of the other member.

(In Ozawa, 1998a see the discussions surrounding Egs. (5), (6), and (15), and also
p. 622.)

One example of Ozawa'’s use of his assumption is in his proof of the IMF in
Ozawa (19974, Th. 5.1), when passing from the third to the fourth member in the
equation between Egs. (9) and (10). (Ozawa has confirmed this reading in a private
communication.) Another example is in his proof of the SRF in Ozawa (1998a,
Sec. 7).

Ozawa agrees that the SRF gives the reduced sjaadter the” measure-
ment, but his assumption rules out our view that the reduction occurs with the
measurement, a view he rejects (Ozawa, 1997b, p. 123). For him, the reduction
occurs earlier, with theremeasuremento a state that we denoﬁ?}. (ag is de-
notedp(t + Atla(t) € {p}) in Ozawa, 2000a, and(t + At|p) in Ozawa, 19973,
1998b.) (Warning: Ozawa sometimes calls just the premeasurement—which he
callsstage +-a “measurement” (Ozawa, 1997b, Eqg. (1); 1998a, Eq. (1))).

According to Ozawag? is the state of after the premeasurement, “condi-
tional upon” the resultp of the later? measurement (Ozawa, 2000a, p. 9), or
“that leads to the outcomp” in the measurement (Ozawa, 1997b, p. 124). More
specifically:

Suppose the system and probe are s})iparticles brought into the singlet state by

the premeasurement. After the premeasurement is complete, we can choose to measure
the spin of the probe in thedirection or thex-direction. If we choose the-direction

and the result is “up,” then the system was prepared in the “down” eigemrg*tejtest

after the premeasurement. If we choose xhdirection and the result is “left,” then

the system was prepared in the “right” eigenstate just after the premeasurement.
[Private communication.]

If, according to Ozawa’s assumptioB evolves unitarily from after the pre-
measurement until after the probe measurement, and if its state after the probe
measurement isp, then its state after the premeasurement is, from the SRF,

Trel(l ® Ep)e]
Trl(l ® Ep)]

This is Ozawa’s expression fo% (Ozawa, 1997b, Eq. (34); 1998a, Eq. (32)). For
him, the SRF describes a unitary evolutionsSdfom o} to 0. For me, the SRF
does not describe an evolution@fas stated in the remarks following the SRF.
Bell's inequality is relevant here. The inequality shows that not only is the
resultp of the probe measurement not known before the measureitndgos not
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existbefore the measurement. This even thoygiould be correlated with the
result of a latter measurement®f Mermin explains this clearly (Mermin, 1981,
1985).

For me, this makes the state% problematic. Furthermore, they are not
needed to obtained the SRF: we proved in Section 3 that the correlations given by
the JMF imply that the state & after the? measurement is given by the SRF.
State reduction is not@dynamicalconsequence of Sabdinger’'s equation; it is a
logical consequence of entanglement.

To reject attributing the state reduction®fo the? measurement is to cling
to classical notions of causality, instead of fully embracing that remarkable new
guantum phenomenon, entanglement.

5. THE MEASUREMENT PROBLEM

We have been careful to distinguish the préhea quantumsystem, from
the macroscopic apparatus measuring it. We made no assumptions about the ap-
paratus other than the minimal requirement that it display measurement results
in accordance with the measurement formula. In particular, we did not model it
as a quantum system obeying Smttiiger’'s equation. Modeling the apparatus in
this way leads to the notoriomseasurement problerithe appearance of a definite
measured value on the apparatus would be a state reduction of the apparatus, which
is inconsistent with Scladinger’s equation.

| argue at length elsewhere that the apparatus cannot be so modeled and thus
there is no measurement problem (Macdonald, 2002). Here | support this point of
view only with the following quotes.

In The Quantum Theory of MeasuremeRt Busch, and P. Lahti, and P.
Mittelstaedt write, “The quantum theory of measurement is motivated by the idea
of the universal validity of quantum mechanics, according to which this theory
should be applicable, in particular, to the measuring process. One would expect,
and most researchers in the foundations of quantum mechanics, have done so, that
the problem of measurement should be solvatitain guantum mechanics. The
long history of this problem shows that there seems to be no straightforward
route to its solution” (Buschket al, 1991, p. 138).

K. Kraus also describes the measuring apparatus as a quantum system (Kraus,
1983, pp. 81, 99). But “There are good reasons to doubt that quantum mechanics in
its present form is the appropriate theory of macroscopic systems” (Kraus, 1983,
p. 100).

According to A. Leggett, “What is required is to explain how one particular
macrostate can be forced by the quantum formalism to be realized. In the opinion of
the presentauthor (whichis shared by a small but growing minority of physicists) no
solution to this problem is possible within the framework of conventional quantum
mechanics” (Leggett, 1992, p. 231).
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W. Zurek writes, “The key (and uncontroversial) fact has been known al-
most since the inception of quantum theory, but its significands being recog-
nized only now: macroscopic systems are never isolated from their environment.
Therefore they should not be expected to follow Scimger’'s equation, which is
applicable only to a closed system” (Zurek, 1991).

6. NOEFFECT % PRODMARG

Consider the following measurement. A spgrparticles moving in they-
direction enters a Stern—Gerlach device oriented irettligection. In each output
beam {t2z) there is a SG device oriented in thelirection. DetecSleaving one of
thex-direction SG devices. Assign a value 0 to the measurem8iis ifietected in
a—x beam ad a 1 if in a+x beam. Then for every state 8f Pr(0)= Pr(1)= %
Think of this triple SG device as a fair coin tosser. The POEM= E; = E; = %
| represents the measurement: for every staté S, Tr(Ego) = Tr(Ejo) = %

Let P be another spir%—. Measure botts andP with triple SG devices. Ab-
sent any assumption about the joint measurement probabilities, we can imagine
different POVMs giving those probabilities. One possibilitys , with Eggo =
Eos1 = E1g0 = E1a1 = 31 ® . AnotherisElg , with Eggo = Ejg; = 31 ®1
andEjg, = Ej ¢, = 0. For every state & + P, Esg p predicts twandependent
fair coin tosses anét;, , predicts twocorrelatedfair coin tosses, 0 with 0 and 1
with 1.

Straightforward calculations show thie, , satisfies both NOEFFECT and
PRODMARG. From these, we can see that the JMF impliesEhat, represents
the joint measurement:

Prs& p) = Tr{(Es ® Ep)t] = Tr(Es ® 1)(I ® Ep)7]

= Tr[(Xp: Esg O(Zﬁ: Esg p>r] = Tr(Esg pt).

The POVME, , satisfies NOEFFECT but not PRODMARG. Thus NOEF-
FECT# PRODMARG.
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