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Entanglement is perhaps the most important new feature of the quantum world. It is
expressed in quantum theory by the joint measurement formula. We prove the formula
for projection valued observables from a plausible assumption, which for spacelike
separated measurements is a consequence of causality. State reduction is simply a way
to express the joint measurement formula after one measurement has been made, and
its result known.
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1. INTRODUCTION

Entanglement is perhaps the most important new feature of the quantum
world. It is expressed in quantum theory by the joint measurement formula (JMF).
I prove that the JMF is equivalent to the conjunction of two assumptions. One is
NOEFFECT: A nonselective measurement of one member of a pair of entangled
noninteracting systems has no effect on measurement probabilities for the other
member. (The measurement isnonselectiveif we do not use its result to condition
measurement probabilities for the other member.)

For projection valued observables, the JMF is equivalent to NOEFFECT
alone. An example shows that for general observables, NOEFFECT6⇒ JMF.

A violation of NOEFFECT in spacelike separated measurements would al-
low superluminal communication. Thus causality implies the JMF for spacelike
separated measurements of projection valued observables. The JMF implies vio-
lations Bell’s inequality, and thus violations of locality. Thus, within the quantum
formalism,causality implies nonlocality.

“No signaling” theorems have eliminated the worry that the nonlocality in
quantum theory violates causality (Jordan, 1983; Zanchini and Barletta, 1991).
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Our result shows that not only does nonlocality not violate causality, it is required
to preserve causality.

We prove that the state reduction formula (SRF) is an immediate corollary of
the JMF: state reduction is simply a way to express the JMF after one measurement
has been made, and its result known. We then prove the von Neumann–L¨uders
projection postulate from the SRF. Thus the “postulate” is a theorem, a consequence
of the JMF.

All this sheds new light on entanglement, joint measurement, state reduction,
nonlocality, and causality in quantum theory.

The paper is organized as follows. Section 2 reviews the postulates of quantum
theory, without the JMF or SRF. Section 3 describes my approach to the JMF and
SRF. Section 4 describes Masanao Ozawa’s approach to the JMF and SRF and
compares our two approaches. Section 5 argues that there is no measurement
problem. Section 6 gives the example showing that NOEFFECT6⇒ JMF.

2. QT-

To prepare for a discussion of the JMF and SRF, we review the postulates of
quantum theory, excluding the JMF and SRF. We call the theoryQT-. For more
details, see Kraus (1983) and Buschet al. (1991).

A quantum systemS is represented by a complex Hilbert space HS, which in
this paper will be finite dimensional. Apreparationof S is represented by astate,
a density operatorσ on HS. A measurementof S is represented by anobservable,
a positive operator valued measure (POVM)S. LetS map the measured values to
Es, 0≤ Es ≤ I. According to themeasurement formula, the probability of result
s for anS measurement on stateσ is Pr(s) = Tr(Esσ ).

If S is isolated, thenσ evolves unitarily according toSchr̈odinger’s equation:
σ → USσU †S. Important: for now, “isolated” excludes “entangled with another
system.” The extent to which Schr¨odinger’s equation applies to a quantum system
entangled with another will be the focus of Section 4.

Let P be another quantum system. ThenS+ P is represented by HS ⊗ HP.
Thus the statesτ of S+ P are density operators on HS⊗ HP, and the observables
are POVMs whose values are positive operators on HS ⊗ HP. A measurement of
S on S+ P is represented by the POVM that mapss to Es⊗ I . Then from the
measurement formula, Pr(s)= Tr[(Es⊗ I )τ ]. The systemsSandP do not interact
if the unitary evolution operator ofS+ P factors:US+P = US⊗UP.

If for some stateσ , Pr(s) = Tr(Esσ ) for every observableS and every result
s, thenσ is the state ofS. For the Tr(Esσ ) uniquely determine the stateσ . We say
that “probabilities determine states.”

For reference we list several identities that we will use without comment:
Tr(XY)= Tr(YX), 〈s1,⊗ p1|s2⊗ p2〉 = 〈s1|p1〉〈s2|p2〉, X ⊗ Y = (X ⊗ I )(I ⊗ Y),
and (X ⊗ Y)|s⊗ p〉 = X|s〉 ⊗ Y|p〉. The partial trace operator Trp maps
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operators onS+ P to operators onS (Cohen-Tannoudjiet al., 1997). We have
the partial trace identities Tr(X) = Tr[TrP (X)] and TrP[(X ⊗ I )Y] = XTrP(Y)
(Buschet al., 1991; Kraus, 1983). Using these identities and “probabilities deter-
mine states,” we see that if the state ofS+ P is τ , then the state ofS is TrP(τ ):

Pr(s) = Tr[(Es⊗ I )τ ] = Tr{Trp[(Es⊗ I )τ ]} = Tr[Es TrP(τ )]. (1)

3. JOINT MEASUREMENT AND STATE REDUCTION

In this section we prove results about joint measurement, state reduction,
causality, and nonlocality in the theory QT- defined in Section 2.

3.1. Joint Measurement Formula

PrepareS+ P in stateτ at time t1, after whichS andP do not interact. At
time tP ≥ t1 measure observableP of P, with result p. At time tS ≥ t1 measure
observableS of S, with result s. Let UP be the unitary evolution operator forP
from t1 to tP. Let US be the unitary evolution operator forS from t1 to tS. Then

Pr(s& p) = Tr[(U †S EsUS⊗U †P EpUP)τ ]. (JMF)

For given tP, P, tS, andS let the POVM representing the joint measure-
ment map the result (s, p) to Es& p. Then according to the measurement formula,
Pr(s& p) = Tr(Es& pτ ) for all s, p, andτ . Thus the JMF for the measurement is
equivalent to

∀s, p Es& p = U †S EsUS⊗U †P EpUP. (2)

The (nonselective) probability ofs is
∑

p Pr(s& p) = Tr[(
∑

p Es& p)τ ]. If the P
measurement is not made, then according to Eq. (5), the probability ofs is

Tr[Es(USTrP(τ )U †S)] = Tr[(U †S EsUS⊗ I )τ ].

NOEFFECT from Section 1 asserts that the two probabilities are equal:

A nonselective measurement of one member of a pair of entangled noninteracting sys-
tems has no effect on measurement probabilities for the other member.

Thus according to NOEFFECT,

∀s
∑

p

Es& p = U †S EsUS⊗ I . (NOEFFECT)

Similarly,

∀p
∑

s

Es& p = I ⊗U †S EpUP. (NOEFFECT)
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Consider also the assertion thatEs& p is the product of its marginals:

∀s, p Es& p =
(∑

p

Es& p

)(∑
s

Es& p

)
. (PRODMARG)

Theorem 1. For given tP, P, tS, andS,

JMF ⇐⇒ (NOEFFECT+ PRODMARG).

Proof: We use the JMF in the form Eq. (2).
JMF⇒ NOEFFECT. Sum Eq. (2) overp and use

∑
p Ep = I . (This is the

no signaling theorem of Jordan, 1983.)
JMF⇒ PRODMARG. Multiply the two NOEFFECT equations, which we

have just shown follow from the JMF, and use Eq. (2) to obtain PRODMARG.
(NOEFFECT+PRODMARG)⇒ JMF. Multiply the two NOEFFECT equa-

tions and use PRODMARG to obtain Eq. (2). ¤

Corollary 1. If P andS are projection valued, thenJMF ⇐⇒ NOEFFECT.

Proof: From the theorem, it is sufficient to prove that ifP andS are projection
valued, then NOEFFECT⇒ PRODMARG. For a projection valuedS, the Es

are orthogonal projections. Thus theU †S EsUS⊗ I on the right side of the first
NOEFFECT equation are orthogonal projections. Sums of these projections are
projections. Every POVM on a product space with projection valued marginal
measures satisfies PRODMARG (Davies, 1976, Th. 2.1, Eq. (2.7)). ¤

The exampleE′ of Section 6 shows that for general POVMs, NOEFFECT6⇒
JMF.

The implication NOEFFECT⇒ JMF for projection valued observables is
of special interest. As noted in Section 1, for spacelike separated measurements
causality implies NOEFFECT. Thus, in QT-:

Corollary 2. Causality implies the JMF for spacelike separated measurements
of projection valued observables.

The JMF predicts violations of Bell’s inequality for some spacelike sepa-
rated measurements of projection valued observables. It thus predicts violations
of locality. Thus, in QT-:

Corollary 3. Causality implies nonlocality.
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We now turn to the SRF. Since probabilities determine states, we can refor-
mulate NOEFFECT:

A nonselective measurement of one member of a pair of entangled noninteracting sys-
tems has no effect on the state of the other member.

But the SRF says that if we make aselectivemeasurement, conditioning the state
of S on theP measurement result, then we mustreducethe state ofS.

3.2. State Reduction Formula

PrepareS + P in stateτ at time t1, after whichS and P do not interact.
At t1 measure observableP of P, with result p. Let US be the unitary evolution
operator ofS over the time of theP measurement. Letσp be the state ofS after
theP measurement, conditioned on p. Then

σp = US
TrP[(I ⊗ Ep)τ ]

Tr[(I ⊗ Ep)τ ]
U †S. (SRF)

Remarks. (i) The SRF requiresno assumptions about the state ofP after theP
measurement, even thatPstill exists. (ii) Since we do not assume that Schr¨odinger’s
equation applies to a system entangled with another, we cannot interpret the SRF
as giving the evolution ofS during theP measurement. (iii) It isclassicalinfor-
mation, i.e.,p, which allows us to reduce the state ofS to σp. (iv) From the SRF,∑

p Pr(p)σp = USTrP(τ )U †S, the unreduced state.

Theorem 2. JMF⇒ SRF.

Proof: MeasureS immediately after theP measurement. From the JMF,

Pr(s& p) = Tr{(U †S EsUS⊗ Ep)τ }. (3)

Thus for everyS and everys,

Pr(s|p) = Pr(s& p)

Pr(p)
= Tr{(U †S EsUS⊗ Ep)τ }

Tr[(I ⊗ Ep)τ ]

= Tr{TrP[(U †S EsUS⊗ I )(I ⊗ Ep)τ ]}
Tr[(I ⊗ Ep)τ ]

(4)

= Tr

{
Es

(
US

TrP[(I ⊗ Ep)τ ]

Tr[(I ⊗ Ep)τ ]
U †S

)}
.

Since probabilities determine states, the SRF follows. ¤

(For more on this kind of reasoning to obtain state reduction, see Svetlichny, 2002.)
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Conversely, given the SRF, a rearrangement of Eq. (4) proves Eq. (3). Thus

State reduction is simply a way to express the JMF after one measurement has
been made, and its result known.

K. Kraus makes a similar statement: “[State reductions] provide a convenient
‘shorthand’ description of correlation measurements. We may thus conclude that,
contrary to widespread belief, [state reductions] can be perfectly well understood,
if quantum mechanics is assumed to be valid also for measuring instruments.”
(Kraus, 1983, p. 99; my emphasis.) Our proof of the SRF does not assume that
quantum mechanics is valid for measuring instruments. Thus Kraus’if clause is
unnecessary. For more on this, see Section 5.

Corollary 4. If P is projection valued, thenNOEFFECT⇒ SRF.

Proof: Measure a projection valued observableS immediately after theP mea-
surement. Then Corollary 2 implies Eq. (3), which implies Eq. (4) for projections
Es, which is sufficient to imply the SRF for theP measurement. ¤

We close this section with a discussion of the von Neumann–L¨uders measure-
ment model. LetSbe a quantumsystemto be measured andP be a quantumprobe,
which is part of a macroscopic measuring apparatus. InitiallySandPare separated
and unentangled, and in statesσ0 andπ0. The system enters the measuring appa-
ratus, interacts with the probe, and leaves the apparatus. Letτ = U (σ0⊗ π0)U †

be the state ofS + P after the interaction, which is called apremeasurement.
(A premeasurement isnot a measurement: a premeasurement is reversible and
no measured value is created.) Now measureP, with the resultp appearing on
the measuring apparatus. In the von Neumann–L¨uders model, theP measurement
serves as a proxy for anS measurement.

The model is for projection valuedS with an associated self-adjoint operator∑
i j si |si j 〉〈si j |. Let P be a nondegenerate projection valued observable with an

associated self-adjoint operator
∑

i pi |pi 〉〈pi |. Choose a unitary operatorU with
U (|si j 〉|p0〉) = |si j 〉|pi 〉 for some fixed initial state|p0〉 of P. Then for an initial
vector state|s0〉 =

∑
i j ai j |si j 〉 of S, U (|s0〉|p0〉) =

∑
i j ai j |si j 〉|pi 〉 ≡ |t〉. For a

P measurement on state|t〉, Pr(pk) =∑ j |akj |2. For anS measurement on state
|s0〉 = Pr(sk) has the same value. Thus aP measurement on state|t〉 with result
pk is also anS measurement on state|s0〉 with resultsk.

The SRF gives the reduced stateσsk of Safter theS measurement. To apply it,
we first use the identity Trp[(I ⊗ X)Y] = TrP[Y(I ⊗ X)] (Kraus, 1983, Eq. (5.15)):

TrP {(I ⊗ Epk )τ } = TrP {(I ⊗ Epk )|t〉〈t |(I ⊗ Epk )}
= TrP {6 j ak j |skj 〉|pk〉6 j āk j 〈skj |〈pk|}
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= TrP {Esk |s0〉|pk〉〈s0|Esk〈pk|}
= Esk |s0〉〈s0|Esk .

Substitute this into the SRF:

σsk = US
Esk |s0〉〈s0|Esk

Tr {Esk |s0〉〈s0|Esk}
U †S.

As a vector, the reduced state isUSEsk |s0〉/‖Esk |s0〉‖. This is the state given by the
von Neumann–L̈uders projection postulate. Since JMF⇒ SRF, the “postulate” is
a theoremof QT-+ JMF.

4. OZAWA’S APPROACH

Masanao Ozawa has published several papers on joint measurement and state
reduction (Ozawa, 1997a,b, 1998a,b, 2000a,b,c). He argues, correctly I believe,
that existing proofs of the JMF and SRF are inadequate or flawed (Ozawa, 1997a,
p. 233; 1997b, p. 123; 1998a, p. 616; 2000a, p. 6). He then offers his own proofs
of the JMF (Ozawa, 1997a, Th. 5.1; 2000a, Th. 3) and the SRF (Ozawa, 1997b,
Eq. (43); 1998a, Eq. (32)). Ozawa considers projection valued observables only.

As emphasized in Section 2, QT- does not assume that Schr¨odinger’s equation
applies to a quantum system entangled with another. But we can prove:

A unitary evolution of one member of a pair of entangled noninter-acting systems has
no effect on the state of the other member.

Proof: SinceS andP do not interact, the unitary evolution operator ofS+ P
factors:VS+P = VS⊗ VP. Let τ be the initial state ofS+ P. Then for allEs,

Tr[Es(VSTrP(τ )V†S )] = Tr[(Es⊗ I )(VS⊗ I )τ (V†S ⊗ I )]

= Tr[(Es⊗ I )(I ⊗ V†P )(I ⊗ VP)(VS⊗ I )τ (V†S ⊗ I )]

= Tr[(Es⊗ I )(VS⊗ VP)τ (VS⊗ VP)†] (5)

= Tr{EsTrP[(VS⊗ VP)τ (VS⊗ VP)†]}.
Thus the state ofS at a later time, TrP[(VS⊗ VP)τ (VS⊗ VP)†], is the same as the
state given by Schr¨odinger’s equation applied toS alone,VSTrP(τ )V†S . ¤

(This is the no signaling theorem of Zanchini and Barletta, 1991, Th. 3.)
For projection valued observables, we proved the JMF in Corollary 2 and the

SRF in Corollary 6 from the assumption NOEFFECT:

A nonselective measurement of one member of a pair of entangled noninteracting sys-
tems has no effect on the unreduced state of the other member.
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(We use the reformulated version following Corollary 4 and add the word “unre-
duced” for clarity and comparison.)

Ozawa uses a different assumption:

A selective measurement of one member of a pair of entangled noninteracting systems
has no effect on the reduced state of the other member.

(In Ozawa, 1998a see the discussions surrounding Eqs. (5), (6), and (15), and also
p. 622.)

One example of Ozawa’s use of his assumption is in his proof of the JMF in
Ozawa (1997a, Th. 5.1), when passing from the third to the fourth member in the
equation between Eqs. (9) and (10). (Ozawa has confirmed this reading in a private
communication.) Another example is in his proof of the SRF in Ozawa (1998a,
Sec. 7).

Ozawa agrees that the SRF gives the reduced stateσp after theP measure-
ment, but his assumption rules out our view that the reduction occurs with the
measurement, a view he rejects (Ozawa, 1997b, p. 123). For him, the reduction
occurs earlier, with thepremeasurement, to a state that we denoteσ 1

p. (σ 1
p is de-

notedρ(t +1t |a(t) ∈ {p}) in Ozawa, 2000a, andρ(t +1t |p) in Ozawa, 1997a,
1998b.) (Warning: Ozawa sometimes calls just the premeasurement—which he
callsstage 1—a “measurement” (Ozawa, 1997b, Eq. (1); 1998a, Eq. (1))).

According to Ozawa,σ 1
p is the state ofS after the premeasurement, “condi-

tional upon” the resultsp of the laterP measurement (Ozawa, 2000a, p. 9), or
“that leads to the outcomep” in the measurement (Ozawa, 1997b, p. 124). More
specifically:

Suppose the system and probe are spin-1
2 particles brought into the singlet state by

the premeasurement. After the premeasurement is complete, we can choose to measure
the spin of the probe in thez-direction or thex-direction. If we choose thez-direction
and the result is “up,” then the system was prepared in the “down” eigenstateσ 1

↓ just
after the premeasurement. If we choose thex-direction and the result is “left,” then
the system was prepared in the “right” eigenstateσ 1→ just after the premeasurement.
[Private communication.]

If, according to Ozawa’s assumption,S evolves unitarily from after the pre-
measurement until after the probe measurement, and if its state after the probe
measurement isσp, then its state after the premeasurement is, from the SRF,

TrP[(I ⊗ Ep)τ ]

Tr[(I ⊗ Ep)τ ]
.

This is Ozawa’s expression forσ 1
p (Ozawa, 1997b, Eq. (34); 1998a, Eq. (32)). For

him, the SRF describes a unitary evolutions ofS from σ 1
p to σp. For me, the SRF

does not describe an evolution ofS, as stated in the remarks following the SRF.
Bell’s inequality is relevant here. The inequality shows that not only is the

resultp of the probe measurement not known before the measurement,it does not
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existbefore the measurement. This even thoughp would be correlated with the
result of a latter measurement ofS. Mermin explains this clearly (Mermin, 1981,
1985).

For me, this makes the statesσ 1
p problematic. Furthermore, they are not

needed to obtained the SRF: we proved in Section 3 that the correlations given by
the JMF imply that the state ofS after theP measurement is given by the SRF.
State reduction is not adynamicalconsequence of Schr¨odinger’s equation; it is a
logical consequence of entanglement.

To reject attributing the state reduction ofS to theP measurement is to cling
to classical notions of causality, instead of fully embracing that remarkable new
quantum phenomenon, entanglement.

5. THE MEASUREMENT PROBLEM

We have been careful to distinguish the probeP, a quantumsystem, from
the macroscopic apparatus measuring it. We made no assumptions about the ap-
paratus other than the minimal requirement that it display measurement results
in accordance with the measurement formula. In particular, we did not model it
as a quantum system obeying Schr¨odinger’s equation. Modeling the apparatus in
this way leads to the notoriousmeasurement problem: The appearance of a definite
measured value on the apparatus would be a state reduction of the apparatus, which
is inconsistent with Schr¨odinger’s equation.

I argue at length elsewhere that the apparatus cannot be so modeled and thus
there is no measurement problem (Macdonald, 2002). Here I support this point of
view only with the following quotes.

In The Quantum Theory of Measurement, P. Busch, and P. Lahti, and P.
Mittelstaedt write, “The quantum theory of measurement is motivated by the idea
of the universal validity of quantum mechanics, according to which this theory
should be applicable, in particular, to the measuring process. One would expect,
and most researchers in the foundations of quantum mechanics, have done so, that
the problem of measurement should be solvablewithin quantum mechanics. The
long history of this problem shows that. . . there seems to be no straightforward
route to its solution” (Buschet al., 1991, p. 138).

K. Kraus also describes the measuring apparatus as a quantum system (Kraus,
1983, pp. 81, 99). But “There are good reasons to doubt that quantum mechanics in
its present form is the appropriate theory of macroscopic systems” (Kraus, 1983,
p. 100).

According to A. Leggett, “What is required is to explain how one particular
macrostate can be forced by the quantum formalism to be realized. In the opinion of
the present author (which is shared by a small but growing minority of physicists) no
solution to this problem is possible within the framework of conventional quantum
mechanics” (Leggett, 1992, p. 231).
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W. Zurek writes, “The key (and uncontroversial) fact has been known al-
most since the inception of quantum theory, but its significance. . . is being recog-
nized only now: macroscopic systems are never isolated from their environment.
Therefore they should not be expected to follow Schr¨odinger’s equation, which is
applicable only to a closed system” (Zurek, 1991).

6. NOEFFECT 6⇒ PRODMARG

Consider the following measurement. A spin-1
2 particleS moving in they-

direction enters a Stern–Gerlach device oriented in thez-direction. In each output
beam (±z) there is a SG device oriented in thex-direction. DetectS leaving one of
thex-direction SG devices. Assign a value 0 to the measurement ifS is detected in
a−x beam and a 1 if in a+x beam. Then for every state ofS, Pr(0)= Pr(1)= 1

2.
Think of this triple SG device as a fair coin tosser. The POVME0 = E1 = E1 = 1

2
I represents the measurement: for every stateσ of S, Tr(E0σ ) = Tr(E1σ ) = 1

2.
Let P be another spin-12. Measure bothS andP with triple SG devices. Ab-

sent any assumption about the joint measurement probabilities, we can imagine
different POVMs giving those probabilities. One possibility isEs& p with E0 & 0 =
E0 & 1 = E1 & 0 = E1 & 1 = 1

4I ⊗ I . Another isE′s& p with E′0 & 0 = E′1 & 1 = 1
2I ⊗ I

andE′0 & 1 = E′1 & 0 = 0. For every state ofS+ P, Es& p predicts twoindependent
fair coin tosses andE′s& p predicts twocorrelatedfair coin tosses, 0 with 0 and 1
with 1.

Straightforward calculations show thatEs& p satisfies both NOEFFECT and
PRODMARG. From these, we can see that the JMF implies thatEs& p represents
the joint measurement:

Pr(s& p) = Tr[(Es⊗ Ep)τ ] = Tr[(Es⊗ I )(I ⊗ Ep)τ ]

= Tr

[(∑
p

Es& p

)(∑
s

Es& p

)
τ

]
= Tr(Es& pτ ).

The POVME′s& p satisfies NOEFFECT but not PRODMARG. Thus NOEF-
FECT 6⇒ PRODMARG.
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